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LETTER TO THE EDITOR 

Soliton solutions for Dirac equations with homogeneous 
non-linearity in (1 + 1) dimensions 

P Mathieut 
Physics Department, Carleton University, Ottawa, Ontario, Canada, K1S 5B6 

Received 22 July 1985 

Abstract. Stationary state solutions with finite energy are presented for generic 
homogeneous non-linear Dirac equations in (1 + 1) dimensions. These models fall into 
two distinct classes, with dual existence conditions. In one case the soliton solution is 
unique and extends throughout the infinite line R' while for the second class the soliton 
exists on a finite interval, and it is not unique. 

Particular forms of non-linear Dirac equations can have localised finite-energy solu- 
tions. These solutions must necessarily be non-topological in the sense that, at large 
distance, the spinor field must approach the vacuum state + = 0. That follows from 
the fact that Dirac-like equations are linear in the time derivative and therefore the 
conserved charge, related to the global phase invariance of the spinor field, is merely 
a norm. Finiteness of this charge requires the field to vanish at infinity. (Clearly this 
comment also applies to non-linear Schrodinger equations.) 

Furthermore the localised solutions must have a non-trivial time dependence. The 
only static solution is the vacuum state t+b = 0. Generally stationary state solutions are 
considered, for which the time dependence is exp(-iwt), with w real. 

In this work, solutions are obtained for generic Dirac equations with homogeneous 
non-linearities in (1 + 1) dimensions. Such models fall naturally into two distinct classes 
with distinct conditions required for the existence of localised finite-energy stationary 
states. These conditions are expressed in terms of the frequency and the non-linearity, 
when evaluated for a particular linear spinor field. 

Consider the Lagrangian density 

~=i$r'a,t+b-c~J.L- U($,  4) (1) 

where + is a two-component spinor field, p is a positive mass parameter and U( 6, +) 
is a general homogeneous Lorentz invariant non-linearity with the property 

WJ(& + ) / a $ = P U ( $ ,  $1 (2) 

with p > 0 but # 1. The representation used for the gamma matrices is 

t Present address: Dtpartement de Physique, Universitt Laval, Qutbec, Canada G1K 7P4. 

0305-4470/85/161061+06$02.25 IQ 1985 The Institute of Physics L1061 



L1062 Letter to the Editor 

The corresponding field equation for stationary states is 

~ ' d + / d x = ( w ~ ~ - p -  W($, $))$, (4) 

Solutions of this equation must satisfy the identity 

4+* -/d* = U ( &  $1. (6) 

This relation is obtained by multiplying (4) by d&/dx, multiplying the Hermitian 
conjugate of (4) by u3 d$/dx (from the right), subtracting the results and integrating 
from x to infinity. Equations (4) and (6) lead to 

I J ~ '  d + / d x = ( I  - p ) U ( & ,  +), (7) 

Therefore the energy, associated with the Lagrangian density ( I ) ,  

+h'(d$/dx) d x + p  

can also be written in the form 

where Q is the conserved charge 

Q = J/'+ dx. 

It will now be shown that the solution of (4) with U ( &  +) satisfying (2), is simply 

$ = x))1/(2-2p) X, (11) 

U' dX/dx=( l  - p ) ( w a ' - p ) ) ~ .  (12) 

where x satisfies 

Equation (12) is the usual Dirac equation with the spatial coordinate scaled by a factor 
(1 - p ) - ' .  One first starts by multiplying (4) by $ and then replaces the non-linearity 
by means of equation (6), with the result 

$[U' d/dx - (1 - p ) ( w a 3  - p ) ] $  =O. (13) 
It is easily verified that the most general solution (centred at the origin) of this equation 
is 

* (X I  = 4(x)xo, (14) 

where 

COS K (  1 - p ) X  
X.'(( 

K = (U2  - p2)1/2 s = [ ( w - p ) / ( ~ + p ) I " 2 ,  (16) 

(17) 

and 4 ( x )  is determined by the substitution of (14) into (6), i.e. 
1/(2-2p). 4 ( ~ ) = [ ~ ( X o , X o ) / ( ~ - ~ ) I  
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The factor ( w - p )  can be absorbed in the definition of the linear spinor field ,yo: 
defining x = x0(w -p)-'" one reproduces the result (11). 

The search for necessary and sufficient conditions for the existence of solitons is 
now reduced to the search of conditions which ensure the reality of 4 ( x )  and the 
finiteness of the energy of Q ( x ) .  At this point one distinguishes two classes of 
homogeneous non-linearities: 

(a) p > 1. Under this condition, the non-linearity vanishes faster than the linear term 
in the field equation when Q += 0, that is 

This implies that the field equation is essentially linearised at large distance. A necessary 
condition for the field to approach zero at infinity is then o2 < p2. A simple consequence 
of this inequality can be seen from (17): since w - p  <O,  U ( i o ,  ,yo) must also be 
negative. This implies that U( & + b )  < 0 for Q a non-trivial solution of (4) and therefore 
(1 - p )  U (  $, Q) > 0. For a positive frequency solution, this automatically ensures the 
positivity of the energy density. 

For these models, the linear spinor field can be written more conveniently in the form 

cosh a( p - l ) ~  xo=(a 

cy = ($- &)''2, P = [ ( p  - @ ) / ( P  + 41' /* .  (19b) 
Known solutions, for the case p = 2, (Lee et a1 1975, Chang et a1 1975, Kaus 1976) 
can now be easily reproduced. For the scalar case, U = A > 0, the solution 
is given by 

Similarly, for a vectorial quartic non-linearity (where ($y'Q)( $y,Q) = (+b'$)' since 
$y'$ = 0 for Q(x) real) and a purely pseudoscalar quartic non-linearity (with ys = yay') 
the results are respectively Q = J,y+,~\-~,y and 9 = l,@y5x1-1x with x given by (20). 
It is easily verified that the charge associated with the solutions of the scalar and the 
vectorial non-linearity is finite, but it is infinite for the pseudoscalar case. Therefore 
there are no soliton solutions for a pseudoscalar quartic non-linearity (which contradicts 
the claim of Lee et a1 (1975)). This result is obviously true for any p >  1. Actually it 
can be generalised to any pseudoscalar model satisfying the equality (18) (Mathieu 
and Moms 1984). The proof is based on the relation 

$ = Iixl-'x, x = [ A / ( p -  41 ' /*XO.  (20) 

o [ $ Q d x = p  [ Q++bdx+Re[ Q+W($,Q)Qdx (21) 

which must be satisfied by any finite-energy solution of (4). For a pseudoscalar 
non-linearity, Re +b+ W$ = 0 and equation (21) implies that o { $+b dx = p { $+I) dx, or 
1 0 1  > p, in contradiction with the existence condition o2 < pz. 

However, for homogeneous non-linearities, the non-existence of a soliton for the 
pseudoscalar case can be simply attributed to the fact that V(Xo,x0) is not strictly 
negative for that case, being zero at the origin. A zero in U ( f o ,  ,yo) leads to a singularity 
in the solution +b and hence to an infinite energy. 

In cases where solitons exist, it is simple to see that as w += 0, the energy and the 
charge become infinite, illustrating the fact that static non-topological solitons do not 
exist. 
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Finally, if a soliton solution exists for a given model satisfying (18), it is unique 
in the sense that in the appropriate phase space there is only one trajectory ending at 
the point CF, = 0, this being the required asymptotic behaviour of finite energy solutions. 

(b)  p < 1. For models of this class, 

lim I w ( &  $11 =a. 
4-0 

The self interaction of the field produces an infinite effective potential well. A con- 
sistency condition for this self-trapping mechanism is that the well so produced must 
have the correct sign to support a bound state. For positive frequency solutions, this 
implies that at least for small values of the field, U ( &  CF,) 2 0 .  However, since 
sgn U ( f o ,  xo) = sgn U ( &  CF,), and that for a fixed frequency the sign of U ( f o ,  ,yo) cannot 
change, to preserve the reality of 4 ( x )  in (17), it follows that U ( f o ,  xo) must be greatcr 
than or equal to 0 for all values of x which then forces the inequality w > w. 

A typical model in this class is the fractional scalar non-linearity, where 

U($,  CL) = b i w P - v $ ,  b > 0, (23) 

(Mathieu and Saly 1984, Mathieu 1985, Mathieu and Morris 1985). The positivity of 
U (  I+&) for the solutions is now translated into the requirement JCF, 3 0. This condition 
then implies that the solution (1 1) is valid only for values of x such that 

cos2(1 - P ) K X ~  t2 sin2(1 - P ) K X  (240 1 

For 1x1 > X ,  the solution is continued by CF, = 0. Hence the support of the soliton is 
compact, of total length 2X. 

In contradistinction with models of the first class, a pseudoscalar non-linearity 
satisfying (22) leads to a field equation whose solutions are solitons with compact 
support. (This is particularly interesting in relation to the fact that the model (23) 
furnishes a natural field theoretical generalisation of the MIT bag model (Chodos et 
a1 1974) in the limit p + 0 (Mathieu 1985). Hence the existence of solitons for the 
pseudoscalar case ensures that a chiral extension of the model is possible.) 

On the other hand, a rather surprising result is that for a fractional vectorial 
non-linearity, U = b( $+I /J)~,  no finite energy solutions exist because nowhere does the 
charge density vanish, that is U ( j o ,  ,yo) > 0 everywhere. This shows that a necessary 
condition for the existence of a soliton is that U ( f o ,  xo) = 0 at some points (and if it 
is true for two values of x, x = * X ,  it is true for an infinite number of values of x since 
U ( f o ,  ,yo) is a periodic function). The condition that U ( f o ,  xo) vanishes at some points 
also ensures the compactness of the soliton: the support is then the length of the 
interval over which U ( f o ,  ,yo) > 0; outside of this interval, the solution is continued by 
the vacuum. 

Note that for non-homogeneous non-linearities which satisfy (22), the existence of 
the soliton does not ensure the compactness of their support. The simplest counter- 
example is the logarithmic model 

U = -A&* Inl$CF,I/P2, A > 0, (25) 
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where p2 is a parameter, for which 
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(26)  

The solution is easily found to be 

Q(x) = /P\exp[ - ( y ) ( c o s h 2  A x + ( - 2  sinh' Ax)  I(;;;;;;). (27) 

For w > p, it describes a smooth lump with 4Q > 0 and Q + 0 as x + *a; thus the 
support of the soliton is not compact. 

For compact solitons, there is a weak superposition principle-the sum of two 
solutions is also a solution as long as they do not overlap. As a result the fundamental 
soliton (11) is not unique. 

Finally, the condition o2 > p2 automatically rules out static solutions. When o = p, 
the solution is the boxed plane wave which has infinite energy. Hence there is no 
plane wave sector for these models: all the finite energy solutions are localised. 

Summarising the results, one finds that existence conditions for positive frequency 
stationary state soliton solutions for p > 1 are w < p and U(xo,  ,yo) < 0 (and nowhere 
zero) while for p < 1, w > p and U ( f o ,  ,yo) > 0 over a finite interval and zero at the 
end of the interval. There is then an apparent duality between the existence conditions 
of these two distinct classes. By construction, these conditions are necessary and 
sufficient. In the first case, the soliton is unique (for a given w and fixed values of the 
parameter) and infinitely extended; the reverse applies for the solitons in models of 
the second class. 

For both cases, it has been shown that (1  - p )  U (  J/, Q) 2 0 is required, where Q is 
a solution. It has already been shown that, under a reasonable continuity hypothesis, 
the integral form of this condition 

(1-P) [ U(J/ ,Q)d"x=[ (U(~,QcCI)-J/W(rl;,Q)Q)d"x>O (28) 

is a necessary condition for the existence of localised solutions for models satisfying 
(18) (Mathieu and Moms 1984). (The analysis presented there applies in any number 
of spatial dimensions.) The present analysis illustrates this result and hints that the 
local version of (28) could actually be necessary in higher spatial dimensions for 
arbitrary models. 

As emphasised by Kaus (1976), one motivation for the study of non-linear Dirac 
equations in (1 + 1) dimensions is that these equations correspond to the asymptotic 
form of the equations in the physically interesting case of (3 + 1) dimensions. Hence 
some qualitative properties of the solitons could be similar in the two cases. 

A final comment, of a more general character, will conclude this work. It has been 
pointed out that charge conservation for the Dirac equation prevents the existence of 
topological solitons. Finiteness of the charge also precludes static non-topological 
solitons. Positive energy static solitons are also excluded in non-linear scalar field 
theories (non-linear Klein-Gordon equations) with no degenerate vacuum. This sug- 
gests that models with no topological solitons cannot have stable static localised 
solutions. Rajaraman has found a static non-topological soliton in a particular two- 
component scalar field theory (Rajaraman 1979). In his model there are also two 
classes of topological solitons. A remarkable energy sum rule, which relates the energy 
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of these three types of solitons (Subbaswamy and Trullinger 1980, 1981) supports the 
fact that static topologically trivial solitons could only occur as a combination of 
existing topological states. This is also illustrated by the work of Mukherjee (1985) 
where the construction of static non-topological solitons from topological ones is 
explicit. 

This work was supported by the Natural Sciences and Engineering Research Council 
of Canada. 
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